FINAL REPORT

Evaluation of Zimba crop safety when applied with or without a tank mix to tropical fruit –

Macadamia Orchard

by

Chris Themsen and Dale Parker

September 2022

 Title of Project:
 Evaluation of Zimba crop safety when applied with or without a tank mix to tropical fruit

 Project Protocol No.
 Zimba – Tropical fruit - 2022

 Project No.
 AA-V0035

 Report No.
 AA-V0035-2

Sponsor Contact Details

Peter Calkin

Switch Innovation Pty Ltd

www.switchinnovation.com.au

M: +61 (0) 411 156 839 E: peter@switchinnovation.com.au

Researcher Contact Details

Chris Themsen B App Sc (Hort Tech), P Grad Dip (Entomology)

Dale Parker B Ag Sc (Hons), Grad Dip Sci

Agreco Australia 39 Paynes Rd, Alloway, Queensland 4670, Australia.

PO Box 6290 East Bundaberg Queensland 4670, Australia.

agrecoaustralia.com.au

M: +61 408 197 180 E: chris.themsen@agrecoaustralia.com

M: +61 439 766 212 E: dale.parker@agrecoaustralia.com

DISCLAIMER

This report has been prepared for the benefit of, and use by Switch Innovation Pty Ltd (the Client) in accordance with the terms of the engagement. This report must not be used for any other purpose or by any other party, nor is the report to be made available to any other party without the prior consent of the Client. No part of this document may be reproduced in part or full without the prior, permission of the Client.

All statements, projections and opinions expressed in this report are given in good faith and have been prepared in reliance upon outcomes throughout the engagement. This report presents an accurate record of the results obtained. The Client indemnifies Agreco Australia (which includes its consultants) against any and all claims against the Client or Agreco Australia by reason of any information omitted or false information included in this report.

The contents of this report have not been externally audited. As such, the Client assumes the entire risk related to the use of this report. Agreco Australia does not warrant or assume any legal liability or responsibility for this report. In no event, will Agreco Australia be liable to the Client or to any third party for any direct, indirect, incidental, consequential, special or exemplary damages or lost profit resulting from any use or misuse of this report.

CONTENTS

ABSTRACT	5
ABBREVIATIONS	6
STATISTICAL ABBREVIATIONS	6
INTRODUCTION	7
PROTOCOL DEVIATIONS	8
RESULTS	9
Table 1. Phytotoxic effects to MCDIN Table 2. Elemental increase	9 10
CONCLUSIONS	11
PHOTOGRAPHS	12
APPENDICES	16
Appendix I. Treatment details Appendix II. Site details Appendix III. Statistical analysis Appendix IV. Plot data Appendix V. Meteorological details	16 19 23 25 27
REFERENCES	29

ABSTRACT

A replicated field trial was conducted at a commercial macadamia orchard at Wallaville, Queensland in 2022. Treatments were applied two times, with a motorise backpack, commencing when MCDIN was at the BBCH 79 growth stage.

Under the condition of this trial, no phytotoxic effects were observed for Zimba (4.2% + 1.6% + 1% + 0.15% + 4.5% Zn + Fe +Mn + Mo + B + organic acids, complex carbohydrates) on MCDIN.

Under the condition of this trial, Zimba applied alone increased all key elements when compared to the untreated control.

Key Words

Macadamia, Zimba

ABBREVIATIONS

Short Abbreviation	Expanded Text
MCDIN	Macadamia integrifolia cv. A203
# DA-A	Number of days after application A
g ai/ha	Grams active ingredient / hectare
g ai/100 L	Grams active ingredient / 100 L
RCB	Randomised complete block
PORO	Point of run off
ACCRST	According to crop stage
°C	Degrees Celsius
КРН	kilometre per hour
BROADC	Broadcast application
kPa	kilopascal
КNAMOT	Knapsack sprayer – motorised
kPa	kilopascal
AIASF	Air-aspirating flat fan
PUMDIA	Pump – diaphragm

STATISTICAL ABBREVIATIONS

Short Abbreviation	Expanded Text
PHYGEN	Phytotoxicity - general / injury
%UTC	% Increase / decrease relative to the untreated control
NSD	Not Applicable due to a p-value > 0.05 (or >0.1)

INTRODUCTION

Background

Tropical tree crops such as macadamia, custard apple, avocados and citrus can suffer from several micronutrient deficiencies due to improper nutrient uptake through root system. In comparison to macronutrients (N, P, K, Ca, Mg & S), the amount of individual micronutrients necessary to promote optimal performance are very small. However, they play a significant role in the physiology of trees during active growth periods, making them a major component of an orchard nutrition program¹. Micronutrients such as zinc, boron and iron are not readily absorbed through plant roots due to different factors. Foliar applications of micronutrients are usually recommended to compensate the micronutrient deficiencies and show positive response in quality attributes in tropical tree crops.

In fruit crops, zinc deficiency is one of the most prevalent deficiencies with low soil zinc levels in most production areas. Zinc is relatively immobile in soil which is required for photosynthesis and phytohormone metabolism³. There is a widespread problem with zinc deficiency in fruit tree crops, and soil application is usually ineffective at resolving it². In a recent study, for avocado, foliar zinc applications are inefficiently absorbed, with less than 1% foliar uptake, there was sufficient absorption of zinc to increase leaf zinc concentrations². In another study, for custard apples, foliar zinc applications have influenced yield attributes which resulted in increased number of flowers per tree and high fruit set⁶.

In avocados, foliar applications of boron at flowering can be benefited, as timing is crucial for convincing fruit set and increased yield⁴. It is evident that, high boron levels in pistils can increase pollen germination rate and pollen tube growth⁵. For macadamias, foliar fertilization with macro and micronutrients is recommended even though boron is the only nutrient proven to respond². Deficiencies of boron can be found at growing points, at root tips, in young leaves, and in developing fruit¹. The incomplete development of the raceme suggests a possible boron deficiency; therefore, boron deficiencies are suspected when flowering is poor¹. Foliar sprays of boron have shown increase in yield and kernel quality of macadamias¹.

Iron is sometimes not readily available for root uptake due to alkaline soil conditions and high manganese or phosphorous in soil⁷. A study reported that, foliar applications of iron have increased fruit weight, length and diameter⁸.

Objectives

To evaluate and compare the phytotoxic effects of Zimba (4.2% Zn + 1.6% Fe + 1% Mn + 0.15% Mo + 4.5% B + organic acids) applied alone and applied with Kocide (350 g/kg cupric hydroxide), Merivon (250 g/L pyraclostrobin + 250 g/L fluxapyroxad), Trivor (186 g/L Acetamiprid + 124 g/L pyriproxyfen), Transform (240 g/L Sulfoxaflor), Bulldock (25 g/L Beta-cyfluthrin) and Prodigy (240 g/L methoxyfenozide) in MCDIN cv. A203.

Methods

A replicated field trial was conducted at a commercial macadamia orchard at Wallaville, Queensland in 2022. Treatments were applied two times, with a motorise backpack, commencing when MCDIN was at the BBCH 79 growth stage.

The crop safety of Zimba was assessed by checking for phytotoxic symptoms including, but not limited to, chlorosis, necrosis and plant growth effects at 7 DA-A, 14 DA-A, 7 DA-B and 14 days after application B (DA-B).

The efficacy of treatments was assessed at 7 DA-A, 14 DA-A, 7 DA-B and 14 DA-B.

Leaf samples were taken at 0 DA-A and 14 DA-B and processed by Phosyn Analytical.

Data was analysed using analysis of variance (ANOVA) test with ARM2022.

Conclusion

The collected efficacy data reflect the test products efficacy and no external biotic factors have influenced the trial.

Weather conditions during the trial were considered typical for this time of year.

Under the condition of this trial, no phytotoxic effects were observed for Zimba on MCDIN, when applied alone or when applied in a tank mix.

Under the condition of this trial, Zimba applied alone increased all key elements when compared to the untreated control.

PROTOCOL DEVIATIONS

There were no significant deviations from the protocol.

All work undertaken followed the test site SOPs. In case of any conflict between the SOPs and the protocol, the protocol took priority.

RESULTS

Treatment		Rate	Phytotoxicity (0 – 100%)			
		(g ai/100L)	7 DA-A	14 DA-A	7 DA-B	14 DA-B
1	Untreated control		0.0	0.0	0.0	0.0
2	Zimba	46	0.0	0.0	0.0	0.0
3	Zimba Kocide	46 52.5	0.0	0.0	0.0	0.0
4	Zimba Merivon	46 20	0.0	0.0	0.0	0.0
5	Zimba Trivor	46 12.4	0.0	0.0	0.0	0.0
6	Zimba Transform	46 9.6	0.0	0.0	0.0	0.0
7	Zimba Bulldock	46 0.625	0.0	0.0	0.0	0.0
8	Zimba Prodigy	46 9.6	0.0	0.0	0.0	0.0
Trea	atment Prob(F)		1.0000	1.0000	1.0000	1.0000
LSE) P=0.05		NSD	NSD	NSD	NSD

Table 1. Phytotoxic effects to MCDIN

Means followed by same letter or symbol do not significantly differ (P=.05, LSD, #P=.1, LSD) Mean comparisons performed only when AOV Treatment P(F) is significant at mean comparison OSL.

Foliage of MCDIN plants were inspected for any symptoms of phytotoxicity including, but not limited to necrosis and/or chlorosis and/or plant growth effects.

Under the condition of this trial, no phytotoxic effects were observed for Zimba when applied alone or in a tank mix.

Table 2. Elemental increase

Troatmont		Rate	Zn (mg/kg)		Fe (mg/kg)		Mo (mg/kg)		Mn (mg/kg)		B (mg/kg)	
	(g ai/100L)		0 DA-A	14 DA-B	0 DA-A	14 DA-B						
1	Untreated control		12.0	13.5	43.0	35.0	-0.1	0.0	91.5	62.0	92.5	63.5
2	Zimba	46	11.0	46.0	44.0	84.5	-0.1	0.9	174.5	156.5	99.5	84.5
%	Increase to UTC			2445.5		595.7		809.5		69.0		52.9

Under the condition of this trial, Zimba applied alone increased all key elements when compared to the untreated control.

CONCLUSIONS

- Under the condition of this trial, no phytotoxic effects were observed for Zimba on MCDIN, when applied alone or when applied in a tank mix.
- Under the condition of this trial, Zimba applied alone increased all key elements when compared to the untreated control.

PHOTOGRAPHS

Photograph 1: Trial site at application A, 0 DA-A

Photograph 2: Crop stage at application A, 0 DA-A

Photograph 3: Zimba (400 ml/100L) + Kocide (150 g/100L) at 14 DA-A

Photograph 4: Zimba (400 ml/100L) + Prodigy (40 ml/100L) at 14 DA-A

Photograph 5: Zimba (400 ml/100L) + Trivor (40 ml/100L) at 14 DA-A

Photograph 6: Zimba (400 ml/100L) at 14 DA-A

Photograph 7: Untreated control at 14 DA-A

Photograph 8: Zimba (400 ml/100L) + Transform (40 ml/100L) at 14 DA-A

APPENDICES

Appendix I. Treatment details

Products

Product name	Active ingredient	Concentration	Formulation	Batch number
Zimba	Zn + Fe + Mn + Mo + B + organic acids	4.2% + 1.6% + 1% + 0.15% + 4.5%	Liquid	Not provided
Kocide WG	Copper (Cu) present as cupric hydroxide	350 g/kg	Water Dispersible Granule	Not provided
Merivon 500 SC	pyraclostrobin + fluxapyroxad	250 g/L + 250 g/L	Suspension Concentrate	0020290448
Trivor 310 DC	Acetamiprid + pyriproxyfen	186 g/L + 124 g/L	Dispersible Concentrate	98190377
Transform 240 SC	Sulfoxaflor	240 g/L	Suspension Concentrate	C781J6R00
Bulldock 25 EC	Beta-cyfluthrin	25 g/L	Emulsifiable concentrate	Not provided
Prodigy 240 SC	methoxyfenozide	240 g/L	Suspension Concentrate	1625971100

Treatments

		Ra	A . P C	
NO.	Product	Active ingredient (g ai/100 L)	Product (g or mL/100 L)	Application schedule
1	Untreated control			
2	Zimba	46	400	
3	Zimba + Kocide	46 + 52.5	400 + 150	
4	Zimba + Merivon	46 + 20	400 + 40	Two broadcast foliar
5	Zimba + Trivor	46 + 12.4	400 + 40	applications, in a spray volume of 1050 L/ha,
6	Zimba + Transform	46 + 9.6	400 + 40	on a 15-day interval
7	Zimba + Bulldock	46 + 0.625	400 + 25	
8	Zimba + Prodigy	46 + 9.6	400 + 40	

Chronology of events

Date	DA-A	Crop stage	Event
14/06/2022	0 DA-A	BBCH 79	Treatment application (A) Leaf analysis
21/06/2022	7 DA-A	BBCH 79	Crop safety assessment
28/06/2022	14 DA-A	BBCH 79	Crop safety assessment
29/06/2022	15 DA-A	BBCH 79	Treatment application (B)
05/07/2022	7 DA-B	BBCH 79 / 51	Crop safety assessment
12/07/2022	14 DA-B	BBCH 79 / 51	Crop safety assessment Leaf analysis

Appendix II. Site details

Site details

Location	Wallaville, Bundaberg		
GPS co-ordinates	-25.078218° 151.994351°		
Soil type	Sandy loam		
Сгор	Macadamia integrifolia		
Variety	A203		
Trial design	Randomised complete block		
Replications	4		
Plot size	1 tree		
Row spacing	8 m		
Plant spacing	4 m		
Plant density	312.5 plants/ha		
Irrigation type	Trickle		

Trial plan

201	202	203	204	205	206	207	208
5	3	7	6	4	2	1	8
101	102	103	104	105	106	107	108
3	8	5	2	1	6	4	7

ΛN

Trial location map

Application details – spray

Application Description					
	A	В			
Application Date	14/06/2022	29/06/2022			
Appl. Start Time	10:00 AM	10:00 AM			
Appl. Stop Time	01:00 PM	11:00 AM			
Application Method	BROADC	BROADC			
Application Timing	ACCRST	ACCRST			
Application Placement	FOLIAR	FOLIAR			
Applied By	LS	LS			
Air Temperature	22 °C	19 °C			
% Relative Humidity	73	74			
Wind Velocity+Dir	3 KPH E	2 KPH SE			
Wet Leaves (Y/N)	Ν	Ν			
Soil Moisture	Moist	Moist			
% Cloud Cover	40	70			
Application Equipment					
Equipment Type	KNAMOT	KNAMOT			
Operation Pressure	800 kPa	800 kPa			
Nozzle Type	COHOAD	COHOAD			
Nozzle Size	1.5	1.5			
% Coverage	100	100			
Carrier	WATER	WATER			
Application Amount	PORO	PORO			
Propellant	PUMDIA	PUMDIA			
Volume	1050 L/ha	1050 L/ha			

Assessments

Phytotoxicity to MCDIN						
Dates	21/06/2022	28/06/2022	05/07/2022	12/07/2022		
Days after application	7 DA-A	14 DA-A	7 DA-B	14 DA-B		
Method and sample size	Phytotoxicity was n affected (0-100%). discolouration of le affects.	nonitored within the p Symptoms monito af tissue), necrosis	plot area and rated a red included chloro (death of leaf tissue	is percent leaf area sis (yellowing and and plant growth		
Leaf elements						
Dates	21/06/2022		12/07/2022			
Days after application	7 DA-A 14 DA-B					
Method and sample size	Leaf samples were collected and processed by Phosyn Analytical.					

	Where applicable, analysis of variance (ANOVA) test and Duncan's New MRT test were conducted using ARM2022.
Statistical analysis	Where data violated the assumptions of ANOVA, data correction transformations were conducted.
	Non-transformed means are presented with ANOVA and letters of separation from transformed data

Appendix III. Statistical analysis

1. Phytotoxic effects to MCDIN

Crop	Type, Code	C, MCDIN		C, MCDIN		C, MCDIN		C, MCDIN			
Ratir	ig Date			21/06/2	2022	28/06/2	2022	05/07/2022		12/07/2022	
Part	Rated	NNNNN, -		NNNNN, -		NNNNN, -		NNNNN, -			
Ratir	ід Туре	PHYGEN		PHYGEN		PHYGEN		PHYGEN			
Ratir	ig Unit/Min/Max	CROP IN.	J, -, -	CROP INJ, -, -		CROP INJ, -, -		CROP INJ, -, -			
Trt-E	val Interval	7 [DA-A	14 E	DA-A	7 [DA-B	14 DA-B			
ARM	Action Codes										
No.	No. Name Rate Unit				1		2		3	4	
1	Untreated control			0.0	а	0.0	а	0.0	а	0.0	а
2	Zimba	46	g ai/100L	0.0	а	0.0	а	0.0	а	0.0	а
3	Zimba Kocide	46 52.5	g ai/100L g ai/100L	0.0	а	0.0	а	0.0	а	0.0	а
4	Zimba Meriyon	46 20	g ai/100L g ai/100l	0.0	а	0.0	а	0.0	а	0.0	а
5	Zimba	46	g ai/100L	0.0	а	0.0	а	0.0	а	0.0	а
6	Zimba	46	g ai/100L	0.0	а	0.0	а	0.0	а	0.0	а
7	Zimba	46	g ai/100L	0.0	а	0.0	а	0.0	а	0.0	а
8	Zimba	46	g ai/100L g ai/100L	0.0	а	0.0	а	0.0	а	0.0	а
LSD	P1001gy P= 05	9.0	g al/100L								<u> </u>
Stan	dard Deviation				0		0		0		0
CV					0		0		0		0
Bartl	ett's X2				0		0		0		0
P(Ba	rtlett's X2)										
Skev	ness										
Kurto	osis										
Replicate F					0	0		0		0	
Replicate Prob(F)					1 1			1		1	
Treat	ment F		0		0	0			0		
Treat	ment Prob(F)		1		1		1		1		

Means followed by same letter or symbol do not significantly differ (P=.05, LSD, #P=.1, LSD) Mean comparisons performed only when AOV Treatment P(F) is significant at mean comparison OSL.

2. Elemental increase

Crop Type, Code				C, MCDIN									
Rating Date				21/06/2022	28/06/2022	21/06/2022	28/06/2022	21/06/2022	28/06/2022	21/06/2022	28/06/2022	21/06/2022	28/06/2022
Part Rated			LEAF, -	LEAF, -	LEAF, -	LEAF, -	LEAF, -	LEAF, -	LEAF, -	LEAF, -	LEAF, -	LEAF, -	
Rating Type			%UTC	%UTC	%UTC	%UTC	%UTC	%UTC	%UTC	%UTC	%UTC	%UTC	
Rating Unit/Min/Max			Zn, mg/kg	Zn, mg/kg	Fe, mg/kg	Fe, mg/kg	Mo, mg/kg	Mo, mg/kg	Mn, mg/kg	Mn, mg/kg	B, mg/kg	B, mg/kg	
Trt-Eval Interval			7 DA-A	14 DA-A	7 DA-A	14 DA-A	7 DA-A	14 DA-A	7 DA-A	14 DA-A	7 DA-A	14 DA-A	
ARM	Action Codes												
No	Name	Rate	Unit										
1 Untreated control		12.0	13.5	43.0	35.0	-0.1	0.0	91.5	62.0	92.5	63.5		
2 Zimba 46 g ai/100L		11.0	46.0	44.0	84.5	-0.1	0.9	174.5	156.5	99.5	84.5		
	Elemental % Increase to	UTC			2445.5		595.7		809.5		69.0		52.9

Appendix IV. Plot data

1. Phytotoxic effects to MCDIN

Crop	Type, Code				C, MCDIN	C, MCDIN	C, MCDIN	C, MCDIN
Ratir	ng Date				21/06/2022	28/06/2022	05/07/2022	12/07/2022
Part	Rated				NNNNN, -	NNNNN, -	NNNNN, -	NNNNN, -
Ratir	ід Туре				PHYGEN	PHYGEN	PHYGEN	PHYGEN
Ratir	ng Unit/Min/Max				CROP INJ, -, -			
Trt-E	val Interval				7 DA-A	14 DA-A	7 DA-B	14 DA-B
No.	Name	Rate	Unit	Plot	1	2	3	4
1	Untreated control			105	0.0	0.0	0.0	0.0
				207	0.0	0.0	0.0	0.0
Mea	n =				0.0	0.0	0.0	0.0
2	Zimba	46	g ai/100L	104	0.0	0.0	0.0	0.0
				206	0.0	0.0	0.0	0.0
Mea	n =				0.0	0.0	0.0	0.0
3	Zimba	46	g ai/100L	101	0.0	0.0	0.0	0.0
	Kocide	52.5	g ai/100L	202	0.0	0.0	0.0	0.0
Mea	n =				0.0	0.0	0.0	0.0
4	Zimba	46	g ai/100L	107	0.0	0.0	0.0	0.0
	Merivon	20	g ai/100L	205	0.0	0.0	0.0	0.0
Mea	n =				0.0	0.0	0.0	0.0
5	Zimba	46	g ai/100L	103	0.0	0.0	0.0	0.0
	Trivor	12.4	g ai/100L	201	0.0	0.0	0.0	0.0
Mea	n =				0.0	0.0	0.0	0.0
6	Zimba	46	g ai/100L	106	0.0	0.0	0.0	0.0
	Transform	9.6	g ai/100L	204	0.0	0.0	0.0	0.0
Mea	n =				0.0	0.0	0.0	0.0
7	Zimba	46	g ai/100L	108	0.0	0.0	0.0	0.0
	Bulldock	0.625	g ai/100L	203	0.0	0.0	0.0	0.0
Mea	n =				0.0	0.0	0.0	0.0
8	Zimba	46	g ai/100L	102	0.0	0.0	0.0	0.0
	Prodigy	9.6	g ai/100L	208	0.0	0.0	0.0	0.0
Mea	n =				0.0	0.0	0.0	0.0

2. Elemental increase

Crop Type, Code	C, MCDIN									
Rating Date	21/06/2022	28/06/2022	21/06/2022	28/06/2022	21/06/2022	28/06/2022	21/06/2022	28/06/2022	21/06/2022	28/06/2022
Part Rated	LEAF, -									
Rating Type	%UTC									
Rating Unit/Min/Max	Zn, mg/kg,	Zn, mg/kg,	Fe, mg/kg,	Fe, mg/kg,	Mo, mg/kg,	Mo, mg/kg,	Mn, mg/kg,	Mn, mg/kg,	B, mg/kg,	B, mg/kg,
Trt-Eval Interval	7 DA-A	14 DA-A								
No. Name Rate Unit Plot										
1 Untreated control 105	13.0	15.0	45.0	37.0	-0.1	0.1	91.0	61.0	89.0	70.0
207	11.0	12.0	41.0	33.0	-0.1	-0.1	92.0	63.0	96.0	57.0
Mean =	12.0	13.5	43.0	35.0	-0.1	0.0	91.5	62.0	92.5	63.5
2 Zimba 46 g ai/100L 104	12.0	54.0	58.0	94.0	-0.1	1.0	198.0	190.0	94.0	79.0
206	10.0	38.0	30.0	75.0	-0.1	0.7	151.0	123.0	105.0	90.0
Mean =	11.0	46.0	44.0	84.5	-0.1	0.9	174.5	156.5	99.5	84.5

Graph 1: Climate Statistic / Actual Jan 2022 – July 2022

Year: 2022

Location: Bundaberg Aero (station 039128), Queensland, Australia

		Jı	ine		July					
		Min °C	Max °C	mm		Min °C	Max °C	mm		
1		12.6	22.4	0.0		16.5	21.4	0.0		
2		13.4	20.5	0.0		16.1	17.4	8.0		
3		11.4	24.2	0.0		13.0	16.1	6.8		
4		17.2	23.0	0.8		11.0	12.0	7.6		
5		8.3	22.7	0.0	Α	10.3	13.7	10.8		
6		13.6	21.6	16.2		10.9	20.1	3.4		
7		13.1	N/A	1.0		7.8	21.7	0.2		
8		8.5	18.3	N/A		8.9	19.9	0.0		
9		6.2	17.6	0.0		4.6	18.3	0.0		
10		7.1	17.9	0.0		6.5	20.2	0.0		
11		7.1	19.2	0.0		7.6	20.9	0.0		
12		8.6	17.7	0.0	Α	10.5	17.8	0.4		
13		8.6	21.1	0.0		9.6	19.2	1.0		
14	Т	11.0	23.9	0.0		8.7	18.9	0.0		
15		13.3	23.6	0.0		8.6	21.8	0.0		
16		13.8	25.0	0.0		10.3	21.5	0.0		
17		11.5	22.8	0.2		10.5	22.9	0.0		
18		7.9	22.2	0.0		10.4	25.1	0.0		
19		11.4	23.6	0.0		8.7	22.8	0.2		
20		13.1	23.1	0.0		11.3	21.8	0.6		
21	Α	12.0	23.0	0.0		14.3	17.7	0.2		
22		9.3	23.8	0.2		15.3	N/A	34.0		
23		10.2	23.7	0.0						
24		8.5	23.5	0.0						
25		8.0	23.2	0.0						
26		9.7	23.4	0.0						
27		13.7	23.1	0.0						
28	Α	10.3	21.3	0.0						
29	т	11.9	21.2	0.2						
30		12.4	N/A	0.0						
31										
Total		10.8	22.0	18.6		10.2	19.5	73.2		

N/A = Not Available T = Treatment application A = Assessment

The trial site was situated at Bundaberg, 10 km NNE of BOM 039128.

REFERENCES

- 1. Sheard, A. and Tredgold, L., Micronutrient requirements & management in macadamia orchards.
- 2. Huett, D.O. and Vimpany, I., 2006. An evaluation of foliar nitrogen and zinc applications to macadamia. *Australian Journal of Experimental Agriculture*, *46*(10), pp.1373-1378.
- 3. Smith, T.E., 2017. Review of macadamia orchard nutrition.
- 4. Newett, S., Foliar nutrients to avocado.
- 5. Hapuarachchi, N.S., Kämper, W., Wallace, H.M., Hosseini Bai, S., Ogbourne, S.M., Nichols, J. and Trueman, S.J., 2022. Boron Effects on Fruit Set, Yield, Quality and Paternity of Hass Avocado. *Agronomy*, *12*(6), p.1479.
- Seraji, E., Shivanna, M.H., Dhananjaya, M.K. and BR, B.V.R.P., 2020. Effect of foliar application of zinc and boron from different sources on growth, yield and quality of custard apple (Annona squamosa L.) cv. Arka Sahan. *IJCS*, 8(5), pp.35-39.
- 7. Jeyakumar, P. and Balamohan, T., 2007. Micronutrients for horticultural crops. *Training manual on role of balanced fertilization for horticultural crops, TNAU, Coimbatore-03.*
- 8. Suman, M., Sangma, P.D. and Singh, D., 2017. Role of micronutrients (Fe, Zn, B, Cu, Mg, Mn and Mo) in fruit crops. *Int. J. Curr. Microbiol. App. Sci*, 6(6), pp.3240-3250.